BEFORE THE

NEW HAMPSHIRE PUBLIC UTILITIES COMMISSION

In the matter of: ENGI d/b/a National Grid Rate Case

)) DG 08-009
) $\sim 10^{-10}$ mm $^{-10}$ $\sim 10^{-10}$ $\sim 10^{-10}$
2 2 16-03-009
. <u>#30</u>

WITH

DIRECT PREFILED TESTIMONY

OF

LEE SMITH AND ARTHUR FREITAS

ON BEHALF OF

THE NEW HAMPSHIRE OFFICE OF CONSUMER ADVOCATE

October 31, 2008

Table of Contents

I.	INTRODUCTION
II.	TRADITIONAL RATEMAKING METHODOLOGY
III.	THE COMPANY'S PROPOSAL FOR COST ALLOCATION 11
IV.	ALLOCATING COSTS AS THE COMPANY PROPOSES IS FLAWED 14
V.	THE MARGINAL COST STUDY CONTAINS A NUMBER OF SPECIFIC ERRORS
VI.	IT IS NOT FAIR OR REASONABLE TO ALLOCATE COSTS ON THE BASIS OF A MARGINAL COST STUDY
VII.	RECOMMENDATIONS

Attachments

- Attachment 1: Resumé of Lee Smith
- Attachment 2: Resumé of Arthur Freitas
- Attachment 3: Page 37 of GLG-RD-3, from the Company's filing
- Attachment 4: Page 16 of GLG-RD-3, from the Company's filing
- Attachment 5: Company Response to OCA 3-13
- Attachment 6: Page 12 of GLG-RD-3, from the Company's filing
- Attachment 7: Page 19 of GLG-RD-3, from the Company's filing
- Attachment 8: Company Response to OCA 3-23
- Attachment 9: Company Response to OCA 3-25
- Attachment 10: Page 13 of GLG-RD-3, from the Company's filing

1 I. INTRODUCTION

2	Q.	What are your names and business address?
3	A.	Our names are Lee Smith and Arthur Freitas. We both work for La Capra
4		Associates, One Washington Mall, Boston, Massachusetts.
5		
6	Q.	On whose behalf are you testifying in this proceeding?
7	A.	We are testifying jointly on behalf of the New Hampshire Office of Consumer
8		Advocate ("OCA").
9		
10	Q.	Ms. Smith, please describe your background and experience.
11	A.	I am a Managing Consultant and Senior Economist at La Capra Associates. I
12		have been with this energy planning and regulatory economics firm for 22 years.
13		I have prepared testimony on rates, rate adjustors, cost allocation and other issues
14		regarding more than 20 utilities in 18 states and before the Federal Energy
15		Regulatory Commission. I have developed and testified on utility revenue
16		requirements, including projected distribution and transmission expenditures, for
17		both utilities and intervenors. Prior to my employment at La Capra Associates, I
18		was Director of Rates and Research, in charge of gas, electric, and water rates, at
19		the Massachusetts Department of Public Utilities. Prior to that period, I taught
20		economics at the college level. My resumé is attached as Attachment 1.
21		

2 A. I have a bachelor's degree with honors in International Relations and Economics 3 from Brown University. I have completed all requirements except the dissertation 4 for a Ph.D. in economics from Tufts University. 5 6 Q. Mr. Freitas, please describe your background and experience. 7 A. I am a Senior Consultant at La Capra Associates. I have been with La Capra 8 Associates for 8 years. I have assisted in the analysis and development of a 9 number of cost of service studies and rate designs in Massachusetts, Connecticut, 10 and Vermont. I have assisted in the development of testimony on utility revenue 11 requirements, and rate designs on behalf of both utilities and other parties to a rate 12 case. Prior to my employment at La Capra Associates, I was a rate analyst for 13 Boston Gas Company. I have a bachelor's degree in Economics and Finance 14 from Marquette University. My resumé is attached as Attachment 2. 15 16 Q. Please summarize your testimony. 17 A. Our testimony explains why National Grid's (hereinafter "Grid" or "the 18 Company") proposed method of allocating delivery service costs to customer 19 classes is inappropriate. A much more appropriate rate design would begin by 20 first allocating revenue requirements to rate classes based upon embedded costs. 21 Such an approach would then use marginal costs to design the rates within the 22 classes. However, the Company has not provided an allocated embedded cost of 23 service study in this case to serve as a basis for cost allocation across classes.

Please describe your educational background.

1

Q.

1		Further, even if the Commission does not agree with our support for embedded
2		cost allocation, the Marginal Cost Study that the Company has used to develop
3		the proposed rates contains a number of problems, and creates a result that would
4		not contribute to efficient resource allocation. Because there is no embedded cost
5		of service study as an alternative, we recommend that the allocation of delivery
6		service costs to customer classes should not be modified in this proceeding.
7		
8	Q.	Briefly, why is the Company's method of allocating costs inappropriate?
9	A.	The allocation of delivery service costs on the basis of marginal costs will treat
10		existing customers, particularly small customers, unfairly, asking them to pay for
11		a larger share of costs than the cost of actually serving these customers. In
12		addition, it is our opinion that using marginal costs only will not result in a fair
13		and reasonable rate design.
14		
15	Q.	In addition to these general objections, have you found any specific problems
16		with the Company's specific marginal cost study?
17	A.	Yes. We have identified a number of theoretical and empirical errors in the
18		Company's marginal cost study. Marginal cost analysis of gas utility delivery
19		service is based on a combination of "adjusted" historical data and projected data.
20		In this case there are problems based on both the underlying data and with how
21		the data is interpreted.
22		

II.

TRADITIONAL RATEMAKING METHODOLOGY

2 Q. Please briefly explain the methodology of traditional ratemaking.

3 A. The ratemaking treatment most common in the industry uses a methodology 4 known as embedded cost allocation. Embedded cost allocation uses historical 5 accounting information to develop the "cost of service" on a company-wide basis. 6 The total company cost of service is then allocated to the rate classes based on the 7 principles of cost causation, meaning that for cost components for which a driver 8 of the cost can be identified, the cost is allocated by that driver. To the extent that 9 one rate class has more effect on the driver of a particular cost component, that 10 rate class will bear a larger share of the component's costs. For example, meter 11 reading expense is driven by the number of customers on the system. Therefore, a 12 rate class containing more customers will bear a larger share of the total meter 13 reading expense than a class with few customers. Other costs, called joint costs, 14 are allocated based on the allocation of the direct costs. For instance, distribution 15 supervision would be allocated based on the allocation of distribution labor that 16 has been allocated directly. The end result of an Embedded Cost Allocation 17 Study is the allocation of all of the actual costs of providing utility service, equal 18 to the utility's revenue requirement, to each rate class.

19

The embedded cost to serve by rate class may then be adjusted to address rate continuity concerns or to achieve any number of policy goals. The adjusted embedded cost to serve by rate class is known as a class revenue target. Rates are then designed for each rate class to collect the class revenue target.

1	Q.	What costs do gas utilities recover from customers and what are being
2		allocated in this case?
3	A.	Gas utility costs consist of costs related to three areas: the supply function, the
4		delivery function, and the customer function. ¹ In this case, since gas supply costs
5		are collected through the Cost of Gas Adjustment which reconciles collections to
6		actual incurred costs, the Company's cost of service study addresses only delivery
7		and customer costs.
8		
9	Q.	Please explain how the company's proposed ratemaking methodology in this
10		case is different from what you just described.
11	A.	In this proceeding the Company is proposing to use a Marginal Cost Study as the
12		basis for allocating costs of utility service to rate classes. A Marginal Cost Study
13		differs from an Embedded Cost Study in that the Marginal Cost Study focuses on
14		the costs to the system of an additional customer or additional usage. In one
15		sense, an Embedded Cost Study is backward looking in that it develops the cost to
16		serve based on the plant and the expenses that were actually incurred to support
17		the current system and customer base. A Marginal Cost Study, on the other hand,
18		is forward looking in that it develops the cost to serve the <u>next</u> customer or the
19		next therm of usage. As noted in Section III the Marginal Cost Study results must
20		be reduced to develop final rates. The reason for this is that the marginal cost to
21		serve assumes the distribution system is brand new when the costs are calculated.

¹ The customer function is actually a subset of the delivery function, but for ease of communication, we shall consider "delivery" to exclude customer related costs.

2

3

4

Q. Please explain the role of marginal costs in traditional ratemaking.

As a result, the total cost for the system is significantly higher than the actual

revenue requirement. This concept is discussed more fully in Section III

5 A. Marginal cost analysis has a valid role in traditional ratemaking, in providing 6 guidance in designing rates. Although the dollars to be collected from each class 7 are usually set on the basis of the embedded cost analysis, the rates that collect 8 those dollars should be informed by marginal costs. Designing rates using 9 marginal costs provides price signals to consumers of the cost of consuming an 10 additional therm of gas. Using a Marginal Cost Study to provide guidance in 11 developing prices for delivery service promotes an optimal utilization of the gas 12 delivery system. The decision that is particularly relevant is the customer's decision on how much gas to use.² If the price informs customers as to what it 13 14 costs to consume more gas, customers will only consume more gas if the value 15 they place on it is equal to or greater than the price. Customers can make 16 economically efficient consumption choices if they are informed of the marginal 17 costs of the products.

However, it is important to make the clear distinction between using a Marginal Cost Study for designing rates versus using it for allocation of costs. As we mentioned above, using marginal costs for allocation is not appropriate, and leads to inequitable and undesirable outcomes.

² PURPA legislation which encouraged pricing based on marginal cost referred specifically to the customer decision about the quantity used.

Q.	Please explain the distinction between cost allocation and rate design.
А.	The cost allocation process distributes total costs among different rate classes.
	This information is usually used to set revenue targets for each rate class. Rate
	design is the process of establishing the specific rate components (monthly
	customer or service charge, and usage charges) to collect the class revenue
	targets.
Q.	Is it clear that customers will actually make economically efficient decisions
	between energy sources if gas is priced at marginal cost?
A.	No, because a number of conditions must hold in order to conclude that customers
	will be able to make economically efficient decisions if gas is priced at marginal
	costs. First, the prices of competing resources must also be priced on the basis of
	marginal cost. Second, customers must always be economically rational. Third,
	customers must have a robust choice of energy sources, which in the short run,
	most customers do not have. Existing customers typically have heating systems
	and other gas appliances that would require replacement at a considerable expense
	in order to switch to other fuels. Only those customers whose gas appliances are
	in immediate need of replacement and those large customers who own dual fuel
	equipment can make such a choice. Most customers can use more or less gas, but
	cannot change fuels in the short run. Even if customers do make economically
	efficient decisions, it is essential to remember that the allocation of costs to
	classes and services on the basis of marginal cost is not equivalent to setting
	prices at marginal cost.
	Q. A. Q.

III. THE COMPANY'S PROPOSAL FOR COST ALLOCATION

2	Q.	Please describe what the Company proposes in this case.
3	A.	The Company proposes to allocate costs to rate classes on the basis of a marginal
4		cost study only, with no Embedded Cost Allocation Study. The Company takes
5		the marginal costs from its study and adjusts them to meet revenue requirements,
6		and then makes further adjustments to its class revenue targets for reasons of rate
7		continuity.
8		
9	Q.	Please summarize how the Company's marginal cost study was developed
10		and how it is used.
11	А.	The marginal cost study uses a standard methodology which is designed to
12		produce the long-run marginal cost of delivering one additional dekatherm
13		("Dth") ³ of gas, and the long-run marginal cost of adding an additional customer
14		to the system. The marginal cost of delivery, estimated by identifying and
15		estimating the value of a cost relationship between growth in design day peak and
16		growth in delivery plant, is multiplied by the estimated design Dth for each
17		customer class. The marginal customer cost is multiplied by the number of bills
18		rendered to each class in a year. Together, these add up to the marginal cost to
19		serve. Because the marginal cost to serve would be greater than the regulated
20		revenue requirement, the utility would overcollect if it actually charged rates
21		based on an unadjusted marginal cost to serve. The marginal class revenues
22		estimated using the approach above were adjusted by the Company reducing the

 $^{^{3}}$ A dekatherm represents 10 therms. A therm is the unit of measurement used to bill customers for gas consumption.

1		marginal cost to serve by 25.23% for all customer classes. See Attachment 3, p.
2		37 of GLG-RD-3.
3		
4	Q.	Please describe in detail how marginal customer and delivery costs have been
5		estimated by the Company.
6	А.	The Company began with the estimation of plant costs which are assumed to be
7		incremental on either a per design day Dth basis or a per customer basis; that is, it
8		is assumed that all investment is driven by either an increase in the design day
9		load or on an increase in the number of customers. Plant costs are converted into
10		annual amounts, equivalent to a rental on new plant through applying carrying
11		costs to the value of the investment. Expenses are categorized as marginal to
12		design day or to the number of customers, and are then "loaded" with (or
13		increased by) administrative and general costs. The estimated marginal expenses
14		that have been loaded with administrative and general expenses are then added to
15		the annualized plant costs to arrive at the full marginal cost to serve.
16		
17	Q.	How are the incremental delivery plant costs, which are the starting point for
18		marginal delivery costs, estimated?
19	A.	Delivery plant is categorized as either: 1) transmission related; 2) mains
20		reinforcement; or 3) mains extension. The marginal cost of each type of delivery
21		plant is estimated in a different way. The transmission-related plant is the amount
22		of new transmission plant needed for support of distribution pressures and is
23		estimated based on an analysis of a single planned investment. The marginal cost

1		of mains reinforcement is estimated from the relationship between projected
2		annual investment years 2008 to 2013 and projected increase in design day load.
3		The marginal cost of mains extension is estimated using the historical relationship
4		between peak day load and investments in mains
5		
6	Q.	Please describe what expenses are also treated as part of marginal delivery
7		costs.
8	A.	Expenses directly associated with the delivery system are computed on a per Dth
9		basis, and are increased by an adder that reflects indirect costs. Examples of
10		expenses directly associated with the delivery system include maintenance of
11		distribution lines.
12		
13	Q.	How are marginal customer costs estimated?
14	A.	First, the cost of new meter and service plant, for customers in each rate class, is
15		calculated, and a carrying cost is applied to get an annual cost. Next, the current
16		average annual customer-related cost is added to the investment cost. Finally, the
17		same percentage adder for indirect costs such as administrative expenses that was
18		applied to marginal delivery costs is used to inflate the marginal customer cost.
19		
20	Q.	Is the calculated marginal customer cost an accurate indication of what it
21		costs per month for existing customers to be on the system?
22	A.	No, it is not. The calculated marginal cost is considerably higher than the actual
23		cost of serving an existing customer, because the customer-related plant serving

1		existing customers is older. The original cost of plant serving existing customers
2		was lower than the cost of new plant, and the plant is partially depreciated. For
3		instance, a customer that has in place a \$200 service pipe and that has paid \$150
4		in depreciation over the years will now be charged the revenue requirement of a
5		new \$500 service pipe.
6		
7	Q.	Is the marginal customer cost an accurate indication of what it costs per
8		month to add new customers to the system?
9	A.	No. The marginal customer cost is an indication of the cost of plant that has to be
10		added to serve new customers. However, the cost of adding a customer is then
11		overstated by the treatment of expenses; it includes average expenses, even
12		though very few expenses are actually marginal to the number of customers on
13		the system. In the short run, it therefore overstates the cost of adding a new
14		customer. Even from a long-run standpoint, however, it still overstates expenses
15		associated with new customers, as the evidence indicates that customer and
16		accounting expenses, per customer, decrease as customers are added. See
17		Attachment 4, p. 16 of Attachment GLG-RD-3.
18		
19	IV.	ALLOCATING COSTS AS THE COMPANY PROPOSES IS FLAWED
20	Q.	Will allocating costs as the Company has proposed result in an equitable
21		allocation of costs?
22	А.	No, it will not, for a number of reasons. First, some customers may pay for more
23		costs than the Company has actually incurred to serve them. Second, some costs

1		have been allocated incorrectly. Third, due to the reconciliation process which is
2		necessary in the Company's methodology, customers will not actually pay the
3		marginal cost of delivery and the costs of the customer function, and some
4		customers will not even pay marginal delivery costs.
5		
6	Q.	Please address these criticisms one at a time. First, why may some customers
7		pay more than the cost of serving them?
8	A.	The marginal cost study is developed from the cost of adding another customer
9		today and the cost of delivering an additional Dth. Typically, many existing small
10		customers are served by less expensive plant, and have already paid for much of
11		that plant over the years. Thus the cost of serving them is less than the cost of
12		serving new customers.
13		
14	Q.	Next, why do you argue that some costs are allocated incorrectly in the
15		marginal cost study?
16	A.	Using the marginal cost study to allocate costs results in all costs being allocated
17		on only two allocation bases - either on the number of customers, or on design
18		day peak load. This results from the fact that all plant and expense accounts get
19		reflected either in the marginal customer cost or in marginal design day costs.
20		The study does not contain any other allocator, but some costs are more
21		appropriately allocated on the basis of commodity or revenue. Extension of
22		distribution mains to new neighborhoods, for example, is a function not only of
23		the expected design day peak but also of the expected load on the lines. The

1 Company would not make the investment in the lines if it did not expect sufficient 2 throughput to make the investment economic. In addition, regulatory expenses are related to the entire operation of the Company and would normally be 3 4 allocated on revenues. Finally, most financial accounting and general office 5 supplies are not caused or even particularly affected by the number of customers 6 or design day load, yet they are treated as marginal costs and are allocated on 7 number of customers and design day loads. The point is that not all costs that the 8 Company needs to allocate to rate classes fit neatly into the cost causation 9 categories (i.e. number of customers or peak demand) of a marginal cost study. 10 11 **Q**. Why does the reconciliation process result in customers not actually paying 12 the calculated marginal cost of delivery and of the customer function?

A. If all customers were charged the full marginal cost, customers would pay much
more than the utility's revenue requirement. This occurs primarily because the
marginal cost study allocates the cost of <u>new</u> plant, while the revenue requirement
reflects the actual age and depreciated value of <u>existing</u> plant. As a result,
marginal cost study results for each class are reduced by the same amount
(25.23%) so that the Company will not overcollect.

19

Q. You further stated that some customers will not even pay the marginal
delivery cost. The marginal delivery cost is only one part of the marginal
cost study. Why does the reconciliation adjustment produce this result?

A. This occurs because for some customer classes the other part of the marginal
costs, the marginal customer costs, is less than 25% of the total. Thus, when the
total is reduced by the 25%, the remaining revenue is not as large as the marginal
delivery costs. This is illustrated in Table 1, below. The table shows marginal
customer costs, marginal delivery costs, and the revenue target resulting from the
adjustment.

7

8 This is a problem because the marginal delivery cost is more important to pricing 9 than is the marginal customer cost, as it provides information to the customer 10 regarding the cost of additional usage of the system.

11

TABLE 1

	Resi	dential	Sma	II C&I	Mediu	m C&I		Large C	281	
	ResNonHt	ResHt	SmHiW	SmLoW	MdHiW	MdLoW	LgHiW	LgLF<90	LgLF<110	LgLF>110
	R-1	R-3&R-4	G-41	G-51	G-42	G-52	G-43	G-53	G-54	G-63
Total Annual Marginal Cost	\$2,034,015	\$40,310,561	\$8,457,783	\$1,254,486	\$9,625,936	\$1,302,151	\$1,321,794	\$1,292,747	\$23,860	\$759,863
Annual Marginal Delivery Cost	\$188,221	\$15,404,347	\$5,337,591	\$672,722	\$7,858,028	\$940,576	\$1,256,586	\$1,234,040	\$19,886	\$698,340
Total Annual Marginal Cost Scaled Down to Embedded Cost of Service Revenue	¢4 500 000	¢20.440.200	¢C 202 004	¢007.070	¢7 407 040	\$070 C40	\$000 205	¢000 507	¢17.040	¢500.440
Requirement	\$1,520,833	\$30,140,206	\$0,323,884	\$937,979	\$7,197,312	\$973,619	\$988,305	\$900,587	\$17,840	\$268,149
Coverage of Marginal	808.00%	195 66%	118 48%	139 43%	91 59%	103 51%	78 65%	78 33%	89 71%	81 36%

13

12

14 Q. Does the Company make a further adjustment to class revenue targets in

15 order to avoid large bill impacts, and does this solve the problem?

16 A. Yes and no. The further adjustment to class revenue targets does moderate rate

- 17 changes, but even this does not solve the problem. We compared these class
- 18 revenue requirements to the class marginal delivery cost, and we found that three
- 19 of the C&I classes would pay <u>less</u> in total than their calculated marginal delivery

cost, while the residential class would pay much more than its marginal delivery

- 2 cost. This is shown in Table 2 below.
- 3

TABLE 2

		Res	idential	Smal	I C&I	Mediu	m C&I		Large C	&I	
		ResNonHt R-1	ResHt R-3&R-4	SmHiW G-41	SmLoW G-51	MdHiW G-42	MdLoW G-52	LgHiW G-43	LgLF<90 G-53	LgLF<110 G-54	LgLF>110 G-63
Final Rev	venue Targets	\$845,445	\$27,829,257	\$7,455,449	\$8,485,164	\$1,100,262	\$1,141,550	\$1,147,833	\$1,139,543	\$21,032	\$467,863
Annual M Cost	larginal Delivery	\$188,221	\$15,404,347	\$5,337,591	\$7,858,028	\$1,256,586	\$672,722	\$940,576	\$1,234,040	\$19,886	\$698,340
Ratio of I Marginal	Revenue Target to Delivery Cost	449.18%	180.66%	139.68%	107.98%	87.56%	169.69%	122.04%	92.34%	105.76%	67.00%
Q.	Will all	locating	g costs as	propose	ed by th	e Compa	any, acc	ording t	o its ma	rginal	
	cost stu	ıdy, res	ult in ap	propriat	te price :	signals?					
A.	No, it w	vill not.	The prop	posed me	ethodolo	gy could	result in	n many c	lasses (ir	n fact,	
	most of	the C&	(I classes) not pay	ing their	full mar	ginal de	livery co	sts. The	se	
	costs ar	e suppo	sed to rep	present tl	he long-1	run marg	inal cost	to the sy	ystem of	usage.	
	Requiri	ng the r	esidentia	l class to	pay mo	re than n	narginal	delivery	service of	costs,	
	while m	nost C&	I custome	ers will p	bay less t	than mar	ginal del	ivery sei	rvice cos	ts, will	
	not resu	ılt in eco	onomical	ly efficie	ent decis	ions abou	ut usage	because	any pric	e signa	1
	is lost.										
Q.	Will ba	sing ra	tes on th	e allocat	tion deri	ived fror	n the M	arginal	Cost Stu	ıdy	
	produc	e econo	mically	efficient	rates?						
A.	No, it w	vill not.	The Con	npany's	approacl	n does no	ot recogn	ize that	from the		
	standpo	int of e	conomic	efficienc	y, the pr	ice signa	l that ma	atters the	e most is	the	
	cost of	increme	ental usag	e. A mo	onthly ch	arge that	would c	cover nev	w plant a	nd	

21 related average expenses for existing customers who are actually served by older,

1		less expensive plant does not create efficiency. In fact, allocating costs and
2		setting a customer charge based on this methodology may cause customers to
3		leave the gas distribution system because of the very high resulting customer
4		charge. This would be a very inefficient use of resources, since the delivery plant
5		to serve them is in place and cannot, for the most part, be used for other purposes.
6 7	V.	THE MARGINAL COST STUDY CONTAINS A NUMBER OF SPECIFIC
8		ERRORS
9	Q.	Have you found errors in the marginal cost study?
10	A.	Yes, we believe there are a number of problems in the estimation of marginal
11		cost. These errors include:
12	•	Not reflecting the proposed main and service extension policy;
13	•	The underestimation of capacity related expense;
14	•	The size of the non-plant Administrative and General ("A&G") expense adder;
15		and,
16	•	Treating a portion of expense of the operation of lines as related to service plant.
17		
18	Q.	Why is it a problem that the marginal cost study did not reflect the impact of
19		the proposed main and service extension policy?
20	A.	As a result of the proposed policy, if customers directly bear a larger part of
21		service costs (customer-related) and mains extension costs (design day related),
22		then marginal costs to the Company will be lower. The Company agrees, in
23		response to OCA 3-13, that if the customer contribution policy change is
24		included, the marginal cost study must be modified, but it did not do so.

1		Including the proposed main and extension policy would have an impact on class
2		marginal costs and on the resulting cost allocation. See Attachment 5, Company
3		Response to OCA 3-13.
4		
5	Q.	Why do you think there may be a problem in the estimate of marginal
6		capacity related expense?
7	A.	The regression analysis of design day load and capacity related expense from
8		1989 to 2006 produces very poor results, as they do not reveal a significant
9		relationship between design day load and capacity related expense. See
10		Attachment 6, page 12 of Attachment GLG-RD-3. Therefore, the Company used
11		the value \$27.49 for its estimate of marginal capacity related expense instead of
12		its regression results. This value represents the average capacity related expense
13		value over the period 2002 to 2006. This figure is close to the average amount
14		over the entire period, but is considerably lower than the 2006 value of \$29.20. A
15		review of the capacity related expenses per year shows that the years 1999 to
16		2002 were much lower than "normal." The 2002 expense was only 72% the level
17		of the 1998 expense. These numbers are shown below in Table 3 for ease of
18		review. If the four low years are removed, the average capacity cost over the
19		period is \$29.40. This would seem to be more representative of capacity expense
20		per design day Dth. Therefore, it appears that the capacity cost is overstated.
21		
22		
23		

IABLE 3

Year	Expense per Dth
1989	31.22
1990	28.41
1991	27.49
1992	27.89
1993	27.82
1994	31.76
1995	31.17
1996	29.37
1997	28.51
1998	27.97
1999	25.90
2000	25.15
2001	22.87
2002	20.27
2003	32.42
2004	27.69
2005	27.66
2006	29.40

3 Q. What is the problem with the non-plant A&G expense adder?

4 A. The estimate of this adder also seems to have been biased by a few years of data. 5 The adder for "non-plant administrative and general costs" is 64%, which 6 increases the direct expenses, both customer and design day related. This amount 7 represents the average ratio of non-plant administrative and general expenses to 8 direct expenses for the years 2003 to 2006. Based on history, this number is too 9 high. From 1989 to 2001, the average ratio of non-plant administrative and 10 general expenses to direct expenses was about 40% or lower. See Attachment 7, 11 page 19 of GLG-RD-3, line 28 for historical A&G loading factors. The ratio after 12 the merger increased to 125%, and has since decreased below 64% in the most 13 recent two years.

1	Q.	Are there other issues with the non-plant A&G expense adder?
2	A.	Yes. In response to discovery, the Company indicated that the reason for the
3		higher level of A&G expense in 2002-2006 may be that some expenses which
4		were classified as O&M were reclassified as A&G after the merger. See
5		Attachment 8, Company Response to OCA 3-23. The numbers on page 19 of
6		Attachment GLG-RD-3, however, do not justify using this average, since they
7		seem to have been decreasing since 2001. See Attachment 7.
8		
9	Q.	Is there any evidence that non-plant A&G expense is marginal to the number
10		of customers?
11	A.	The Company's own data does not support the assumption of marginality in this
12		category of costs. In response to discovery, the Company notes that the long-term
13		correlations were not strong. It justifies treatment of non-plant A&G as marginal
14		on the basis that the expenses in this category are expected to grow. See
15		Attachment 9, Company Response to OCA 3-25(i). This does not mean that the
16		cost per customer will increase. A decrease in the cost per customer would be
17		expected due to the nature of the expenses, and the likelihood of economies of
18		scale with regard to billing and accounting systems.
19		
20	Q.	Why do you think that marginal customer costs have been overstated and
21		marginal delivery costs have been understated by the treatment of some
22		expenses?

1	A.	The expense account "Operation of Dist. Lines" is split between customer and
2		design day load marginal costs, on the basis of the ratio of service plant to service
3		plus mains in 1998. See Attachment 10, page 13, line 4, Attachment GLG-RD-3.
4		Service plant requires maintenance (which is in a separate account), but the
5		evidence does not support service plant requiring any operation expense. The
6		activities described under this FERC account (874) suggest that they rarely, if
7		ever, will relate to services. In response to discovery, when asked which activities
8		in this account involve work on service plant, the response was simply that the
9		code of accounts did not segregate this expense between services and mains. See
10		Attachment 9, Company Response to OCA 3-25(c). This results in more expense
11		than appropriate being included in the customer-related category.
12		
13	Q.	What is the result of these various problems?
14	A.	We have not quantified the total impact. Including the proposed customer
15		Contribution in Aid of Construction policy change will lower marginal costs, but
16		the Company has not provided an alternative study to determine how this will
17		affect allocation. Understating the value of capacity related expense will result in
18		understating marginal delivery costs. Correcting this would reduce the share of
19		costs allocated to the residential classes. Reducing the A&G expense adder will
20		lower both marginal delivery and marginal customer costs, and again it would
a 1		
21		reduce the share of costs allocated to the residential classes. Treating all

23 costs and again reduce the share of costs allocated to the residential classes.

1		Therefore, although we have not quantified the impact, a corrected cost of service
2		study would allocate less to the residential classes.
3		
4	VI.	IT IS NOT FAIR OR REASONABLE TO ALLOCATE COSTS ON THE
5		BASIS OF A MARGINAL COST STUDY
6	Q.	Why do you believe it is not appropriate to allocate costs on the basis of
7		marginal costs?
8	A.	Marginal cost revenues represent what revenues would be if the utility charged all
9		customers as if the system were being constructed anew in order to serve all
10		customers. This is clearly not the case. The system has been constructed over
11		many years, and existing customers have paid for the system over these years. To
12		charge them as if they were now buying a new system would clearly overcharge
13		them, and would provide excess profits to the utility. This is the reason that,
14		when the marginal cost study is used for allocation purposes, a revenue
15		reconciliation step is included prior to developing rates. In this step the marginal
16		cost of service is scaled down to the allowed revenue requirement. In the
17		Company's filing, the marginal cost of service is adjusted downward by 25.23%
18		in order to reconcile to the allowed revenue requirement.
19		
20		The traditional allocation of embedded costs recognizes that customers have in
21		fact paid for much of the system. It allocates actual costs, so that no
22		reconciliation is necessary.
23		

1	Q.	Most of this discussion has been regarding the use of marginal costs for
2		allocation. Do you object to using marginal costs for the purpose of
3		designing rates?
4	A.	We support using the estimate of marginal delivery cost to set the price for
5		incremental usage, because this price signal affects decisions of all customers on
6		usage. However, the marginal customer cost is not relevant to decisions for
7		existing customers. If it is applied to both existing and new customers, it does not
8		provide a useful price signal and it has other negative effects.
9		
10	Q.	What are the other negative effects of using marginal costs to set the
11		customer charge?
12	A.	Increasing the customer charge relative to other rate components will always have
13		undesirable impacts on small customers, who will experience larger percentage
14		increases than larger customers. We do not think the Company has offered an
15		adequate justification for a rate change that creates heavier bill impacts on small
16		customers than on large customers.
17		
18	Q.	Please summarize why you do not think that allocating costs in the manner
19		proposed by the Company will encourage efficient allocation of resources.
20	А	We ask the Commission to consider several questions, the answers to which
21		explain our reasoning:
22		

1	Q:	If the residential class is charged more than they are currently, simply
2		because of marginal customer costs, does this make resource allocation more
3		efficient?
4	A:	No, resource allocation will not be more efficient because existing residential
5		customers are charged more for being on the system.
6		
7	Q:	Will C&I customers use more gas because their total bill will be lower, or
8		will they use the same amount of gas because the marginal cost for usage is
9		the same?
10	A:	C&I usage will be determined by the cost of incremental usage. The decisions of
11		C&I customers will be more efficient only if the proposed price they pay for
12		incremental usage equals the marginal cost. The Company's cost allocation does
13		not lead to this result.
14		
15	Q:	If residential customers decide to leave the gas distribution system because of
16		higher customer charges, does this increase efficiency?
17	A:	Economic efficiency (optimal resource allocation) will not be improved if some
18		residential customers are driven off the gas system. This would leave portions of
19		the existing distribution system perhaps permanently under-utilized.
20		
21		
22		

1 VII. RECOMMENDATIONS

2 Q. What are your recommendations to the Commission regarding cost 3 allocation?

4 A. We recommend that the Commission reject the reallocation of costs in this case 5 because the Company has not shown why its Marginal Cost Study should be used 6 to develop rates. There are at best weak theoretical grounds for utilizing marginal 7 costs to allocate costs, the Company's marginal cost study is flawed in a number 8 of respects, and the Company's proposed allocation would move away from 9 efficient price signals as many C&I classes would pay less than the marginal 10 delivery cost under the proposed rates. Therefore, any revenue increase allowed 11 should be allocated on an equal percentage basis to each rate class. 12

13 **Q.** Does this conclude your testimony?

14 A. Yes.

Alexand Associates

Lee Smith

Senior Economist, Managing Consultant

Ms. Lee Smith is a Managing Consultant and Senior Economist at La Capra Associates. Ms. Smith has twenty years experience in utility economics and regulation. Her work has encompassed all aspects of utility pricing, cost analysis, forecasting, and both demand-side and supply planning in electric, gas, and water utility cases. Ms. Smith has analyzed issues of electric and gas rate design, including rate unbundling and appropriateness of utility costs in 18 different states for a multitude of utilities and other entities. She participated in development of the New England ISO, and has advised a number of clients on various aspects of electric restructuring. As a consultant, her clients have included gas and electric utilities, regulatory commissions and other public bodies. Prior to joining La Capra Associates, Ms. Smith was employed as the Director of Rates and Research at the Department of Public Utilities.

RELEVANT EXPERIENCE

- * Testified on behalf of the Georgia Public Service Commission staff on allocation of distribution and generation costs by the Savannah Electric Company.
- Advised the Pennsylvania Office of the Public Advocate staff and the Washington D.C. Office of the People's Counsel on FERC SMD issues.
- * Advised Pennsylvania Office of the Public Advocate staff in restructuring proceedings; presented testimony on cost functionalization and rate unbundling in eight cases; testified against GPU's attempt to change Restructuring Settlement.
- Assisted the Arizona Corporation Commission in developing unbundled rates for all Arizona utilities; preparing positions, and negotiating with utilities on stranded cost and rate design; testified on Citizens management of its power supply contract.
- * Represented the Massachusetts Department of Energy Resources at NEPOOL committees engaged in developing the New England Independent System Operator, and an Open Access Transmission Tariff for New England.

Resume of Lee Smith Page 2 of 11

EMPLOYMENT HISTORY

La Capra Associates	Boston, MA
Managing Consultant	1984 - present
Department of Public Utilities	Boston, Ma
Director of Rates and Research	1982 - 1984
EDUCATION	
Tufts University	Medford, MA
Ph.D. in Economics, all but dissertation	1966 - 1969
Economics Department Fellowship	
Boston College	Boston, MA
Study of Statistics	1966
Brown University	Providence, RI
B.A. with Honors, International Relations and Economics	1965
Prize in International Relations	

PROFESSIONAL

Bunting Institute Fellowship

1970 - 1971

PUBLICATIONS

Non-price Issues in Gas Supply Planning, NATIONAL REGULATORY RESEARCH INSTITUTE, Biennial Regulatory Research Conference, 1994

The Economic Impact of Hurricane Agnes on the Chesapeake Bay in Maryland, JOHN HOPKINS PRESS

"Development and Implementation of Restructuring in New England", Institute of Public Utilities at Michigan State University Williamsburg Conference, December 1995

"Planning for Gas and Electric Reliability", NARUC Biennial Regulatory Information Conference, Vol. II, 1994

Resume of Lee Smith Page 3 of 11

DESCRIPTION OF SELECTED PROJECTS

Massachusetts Office of the Attorney General

Reviewed proposal by Bay State Gas to increase its rates to reflect a claimed decrease in Average Use per Customer. Testified that Bay State had not demonstrated that the decrease was as large or permanent as it claimed, and that the proposal was inconsistent with Bay State's existing Performance-Based Ratemaking Plan.

Kentucky Governor's Office of Energy Policy

Researched and authored a report for the Governor's Office of Energy Policy on whether and how changes in rate designs and ratemaking methodology could contribute to encouraging more efficient use of electric energy. This addressed the potential for seasonal rates, increasing block rates, decoupling, and other possible rate treatment of energy efficiency.

Belmont Municipal Light Department

Managed preparation of an allocated cost of service study and development of new rates for this Massachusetts municipal utility which was faced with large rate increase because of expiration and replacement of old below market power contract. Introduced rate elements, including summer rates, higher demand charges, and increasing block rates, to encourage load response from ratepayers.

Groton Municipal Utilities

Prepared updated allocated cost of service study, developed unbundled electric rates, and introduced new rates and seasonal element to all rates for large municipal utility. Also prepared standby and net metering rates.

Wisconsin Citizens Utility Board

Testified on behalf of the CUB in a rate case regarding Wisconsin Electric Power's (WEPCO) requested increase in power costs. Testimony demonstrated that WEPCO's new MISO-wide dispatch modeling overstated its costs, and that there was not justification to set aside much of the proceeds of the sale of the Point Beach unit.

Oklahoma Office of the Attorney General

Testified on behalf of the AG on proposals by Oklahoma Gas and Electric and Public Service of Oklahoma to build a 900 MW coal plant. Ms. Smith's testified that charging customers for this plant during construction through a rate rider would inappropriately shift risk to customers.

Wisconsin Citizens Utility Board

Testified on behalf of the CUB in a case addressing Midwest Independent System Operator ("MISO") charges and impact on costs of all Wisconsin investor-owned utilities. The testimony found that many of the charges imposed by MISO were not actually incremental to

2008

2007

2007

2007

2007

2007

how the utilities had previously estimated their costs based on own-load dispatch models.

Pennsylvania Office of the Public Advocate

Testified on cost allocation, rate design and PJM costs in the Penelec and Met Ed rate cases Testimony also addressed the collection of stranded costs.

Wisconsin Citizens Utility Board

Testified on behalf of the CUB in a fuel rule case regarding Wisconsin Power and Light Company, regarding WPL's projection of fuel costs.

Green Mountain Power Company

Assisted the Company in considering various alternative ratemaking mechanisms. This has included drafting the first electric Fuel and Purchased Power Adjustment proposals in Vermont, and also an Earnings Sharing Mechanism.

Wisconsin Citizens Utility Board

Testified on behalf of the CUB in a fuel rule case regarding Wisconsin Electric, regarding WEPCO's projection of fuel costs. Identified a number of modeling errors, particularly in treatment of coal generation.

Massachusetts Office of the Attorney General

Testified on interpretation of automatic distribution rate adjustment agreement and appropriate normalization of regional index of utility distribution rates.

Wisconsin Citizens Utility Board

Testified on behalf of the CUB in a rate case regarding Wisconsin Electric regarding a number of issues, including cost allocation, rate design, a proposed Earnings Sharing Mechanism, proper treatment of synergy savings resulting from merger, and the Company's projected power costs in 2005. Ms. Smith testified that the Company's modeling of its coal units resulted in an overstatement of fuel costs.

Georgia Public Utility Commission Staff

Testified on allocation of distribution and generation costs and rate design in Savannah Electric Power Company rate case.

Pennsylvania Office of the Public Advocate

Festified on cost allocation and rate design in the Pike County Gas rate case. We addressed the need to weight most customer allocators. We testified that the utility was using borrowed load data that did not reflect the utility's service territory, and that it is inappropriate to treat part of the gas distribution mains as customer related.

Testified against allocation based on a single issue, and on the need for a cost allocation study before realigning class revenues in Valley Energy (gas) rate cases. Also assisted in analysis of synergies in Exelon/PSEG merger and appropriate allocation of synergy savings. Assisted OPA in settlement of FERC gas pipeline case.

2006

2006

2006

2005

2006

2005

2005

Resi	ime of Lee Smith Page 5 of 11
Washington Electric Cooperative	2005
Estimated load data, assisted in development of allocated costs.	
Wisconsin Citizens Utility Board	2005
Testified on allocation of power supply costs and energy efficiency program costs Fuel rule case.	in WEPCO
New Hampshire Office of the Consumer Advocate	2004
Testified on cost allocation and rate design in Public Service Company of New Har rate case.	npshire
Arizona Corporation Commission Staff	2004
Assisted Staff with major rate case in which APS proposed to rate base generating which had been built by its competitive affiliate; testified on accounting for strande	plants d costs.
Massachusetts Office of the Attorney General	2003
Testified on Performance Based Ratemaking Plan proposed by Boston Gas.	
Connecticut Office of the Consumer Counsel	2003
Testified jointly in CL&P rate case on distribution revenue requirements with Wair	e Whittier
Arkansas Public Service Commission Staff	2003
Advised the Arkansas Staff and presented testimony on EAI's proposal to sell base generating capacity to other Entergy companies.	load
Business Energy Alliance and Resources	2003
Testified in two gas cases in front of the Illinois Commerce Commission on gas cos allocation, rate design, and transportation rates.	1
Pennsylvania Office of the Consumer Advocate	2003
Advised OCA on and testified at FERC in FERC Docket EL-02-111-000, regarding to eliminate Regional Through or Out Rates for MISO and PJM, and possibly to int Seams Elimination Charge Adjustment.	proposals roduce a
Groton Municipal Utilities Prepared allocated cost of service study, developed unbundled electric rates for 2 el utilities. Also prepared standby and delivery backup service rates.	2003 lectric
New York State Energy Research Development Authority	2003
Managed development of model to determine impact on electric bills of installing (Dn-Site

Managed development of model to determine impact on electric bills of installing On-Site Generation, and advised NYSERDA on net metering law and rules.

Resume of Lee Smith Page 6 of 11

Arkansas Public Service Commission Staff	2002
Advised the Arkansas Staff on EAI's two proposals to sell capacity freed up by the loss North Little Rock load, first to Arkansas retail load, and then to Entergy's Louisiana uti	of the lities.
Arizona Corporation Commission Staff	2002
Testified against Citizens' request for increase in PPFAC to recover \$87 million in pow costs, as Citizens' management of its power costs had not been prudent.	er
New Hampshire Public Utility Commission	2002
Testified on Unitil proposal to raise delivery service rates and consolidate two utilities.	
Massachusetts Water Resources Authority	2002
Testified against BECo request to raise delivery service rates in spite of rate freeze.	
Illinois Citizens Utilities Board	2001
Testified on appropriate distribution cost allocation and rate design.	
Arkansas Public Service Commission Staff	2001
Analysis of generation prices under competition and under deregulation, supported by testimony.	
Pennsylvania Office of the Consumer Advocate	2001
Testified on GPU restructuring settlement and merger proposal and against GPU's reque increase its Provider of Last Resort Rates.	est to
Texas Retailers Association	2000
Testified as to the appropriate cost of service for three major Texas utilities, focusing on transition costs, transmission plant increases, and support services costs allocated to regulated affiliates.	
Burlington Electric Department	2000
Testimony on Transportation Rate proposed by Vermont Gas Systems.	
Arkansas Public Utilities Commission	2000
Estimated retail class rates under continued regulated and retail access.	
Hawaii Division of Consumer Advocacy	2000

Prepared allocated cost of service study and rate design for the Hawaii Electric Company.

Resume of Lee Smith Page 7 of 11

10	30 1 01 17
Arizona Corporation Commission	2000
Helped develop Codes of Conduct for Electric Affiliates; testified in stranded cost case for Arizona Electric Cooperative.	
Arkansas Public Utilities Commission	1999
Assisted in market power docket, standard offer and default service policy development, rate unbundling.	
Ohio Consumer's Counsel	1999
Advised OCC on stranded generation costs and retail market generation costs.	
Arizona Corporation Commission	1998
Assisted ACC in cases that developed unbundled rates for all regulated Arizona utilities; testified on stranded cost and retail access for AEPCO, APS, and TEP.	
Maryland Office of the People's Counsel	1998
Advised on stranded cost, prepared analysis and testimony on rate unbundling for PEPCO and Delmarva.	
Burlington Electric Department	1998
Prepared testimony on interruptible gas transportation rate for an electric generator.	
Pennsylvania Office of the Consumer Advocate	1997
Analyzed and prepared testimony on rate unbundling in eight major utility cases; advised OCA on stranded cost; assisted in testimony on stranded cost and market price; assisted in settlement discussions.	
Maine Office of the Public Advocate	1997
Prepared testimony on Bangor Hydro Electric emergency rate and normal rate proceeding; issues included Maine Yankee, replacement power costs, depreciation rates, cost mitigation.	and
Maryland/Pennsylvania Public Advocates	1997
Advised staff of both public advocates on PJM restructuring, including analysis of FERC filings and ongoing development of market structures and ISO.	
Massachusetts Division of Energy Resources	1997
Assisted DOER in drafting restructuring legislation, negotiating additional restructuring settlements with utilities, consideration of ratemaking methodologies, and development of New England ISO.	with

Resume of Lee Smith Page 8 of 11

New Hampshire Public Utilities Commission	1996
Assisted Commission staff in writing Draft Order on Restructuring; prepared discovery for utilities; prepared discovery questions for hearings on various issues, including corporate unbundling, market structure, transmi- stranded cost theory, measurement, and mitigation.	ssion,
Massachusetts Division of Energy Resources	1996
Represented the DOER at NEPOOL committees engaged in developing an Independent System Operator, a revised NEPOOL Agreement, and an Open Access Transmission Tariff for New England. Assisted the DOER in other matters including development of model for Boston Edison pilot progra based on proxy for competitive market real-time pricing.	ram
CMEEC	1996
Developed methodological basis for rate unbundling for the five Connecticut municipal utilities that are members of CMEEC.	
Black Hills Power and Light Company, South Dakota	1995
Advised Company on development of ancillary services and open access trai	nsmission rates.
Pennsylvania Office of the Consumer Advocate	1995
Assisted with preparation of comments on restructuring issues.	
Maine Office of the Public Advocate	1995
Prepared alternative marginal cost study on Maine Public Service Company. Presented testimony advocating allocation of excess costs on the basis of ger allocators rather than EPMC.	neration
Massachusetts Division of Energy Resources	1995
Assisted DOER in all aspects of electric industry restructuring, from rate unbundling to planning and developing revised market structure for the New England Power Pool.	
Littleton Water and Light Department, N.H.	1995
Developed retail wheeling rate; advised on retail wheeling issues.	
Boston Edison Company	1995
Presented rate design workshop for Company personnel to assist in preparing for restructuring.	1

Kansas Citizens Ratepayers Utility Board	1995
Testimony on proposed class rate increases, which were not based on allocated costs, and rate design.	l on
World Bank	1995
Developing conditions under which State of Orissa, which is privatizing its electric distribution system, should consider revaluation; assisting with other restructuring issues	
Division of Energy Resources	1994
Advised DOER on position on changes in Integrated Resource Management, including proposal to open Transmission and Distribution access to meet resource needs.	
Black Hills Power and Light Company, South Dakota	1994
Advised Company on rate treatment and phase-in of major new generating unit, development of wholesale transmission rate, and response to retail wheeling.	
New Hampshire Office of the Consumer Advocate	1994
Advised Office on retail wheeling concerns; prepared testimony on cost of service, cost allocation and marginal cost presented by an electric utility.	
Town of Fort Fairfield	1994
Prepared response of town to CMP's threat to shut down a renewable energy facility following state-financed buyout of a high-priced unit contract, resulting in settlement.	
Constellation Energy	1994
Projected market price of power, advised developer on potential market.	
Stow Electric Energy Study Committee	1994
Advised committee on setting up new municipal utility, based upon results of response to RFP for provision of power and operations services, negotiated with bidders.	
Massachusetts Department of Energy Resources	1993
Assisted with analysis of economic impact of retiring older generating plants to meet Clear Air Act Targets.	
Eastern Energy Associates	1993

Directed analysis and computation of avoided costs of a major electric utility.

Resume of Lee Smith

Pag	ge 11 of 11
Nantuakat Elastria Company	1002
Nantucket Electric Company	177-
selection).	
Nantucket Electric Company	1991
Applied load research data to develop detailed (daily) demand and revenue projections.	
Nantucket Electric Company	1991
Assisted in rate case, including allocating costs between customer classes, developing marginal costs, designing rates.	
Nantucket Electric Company	1991
Presented testimony on externalities created by emissions from electric generation on Nantucket Island, and potential impact of inclusion of externalities on ratepayers.	
Illinois Office of Public Counsel	1990
Provided expert advice to consumer advocate group on developing state least-cost planning guidelines for gas utilities.	
Plattsburgh Municipal Light Department	1990
Developed new rate for large, 46 KV service customers, directed development of value of plant serving the proposed class.	
Middleton Electric Light Department	1989
Developed innovative cost-based rate for very large interruptible customer and negotiated with both NEPOOL and customer.	
Littleton Water and Light Department	1989
Updated Company's revenue allocation and rates to reflect new marginal-cost based wholesale power tariff.	
Boston Edison Company	1989
Assisted Company in analysis of jurisdictional cost allocations in major court dispute; developed company response to FERC order on allocation of distribution/transmission	plant.
Reading Municipal Light Department	1988
Analyzed power supply options, determined least-cost options.	
Wellesley Municipal Light Plant	1987
Redesigned rates for municipal utility, including allocating costs, estimating marginal costs, and designing rates, including a time-of-use rate for largest customers.	

ARTHUR FREITAS

Senior Regulatory and Markets Specialist

Arthur Freitas, our Regulatory & Markets Specialist, is an economist with nine years of experience in both the natural gas and electric markets. His experience includes cost of service analysis for natural gas and electric utilities, rate design analysis, unbundling analysis, natural gas and electric market price forecasting, retail electric and natural gas market analysis, and energy planning and procurement for both utilities and end users. Since joining La Capra Associates in 2000, Mr. Freitas has assisted in a number of regulatory proceedings, which include electric and natural gas utility rate cases, electric restructuring hearings, utility prudency reviews, wholesale and retail power procurement, and utility portfolio analysis and risk management.

RELEVANT EXPERIENCE

Cost Allocation and Rate Design

- Performs, on a continuous basis, all aspects of work that relates to planning and rates for a small Massachusetts natural gas utility. This includes preparing cost of service studies and rate designs, preparing semi-annual Cost of Gas Adjustment filings and annual Cost of Gas Reconciliation filings, preparing and supporting before the regulator Long Range Forecast and Supply Plans, preparing and supporting annual Performance Based Ratemaking filings, conducts competitive solicitations for gas supply.
- * Assisted in the development of a revenue neutral cost of service study and rate design for a small Vermont electric cooperative. Work included load research, developing billing determinants, developing proof of revenues, developing the cost of service model and running multiple rate designs to evaluate rate levels and customer impacts under various rate design principles and policy goals. Also assisted in drafting sections of testimony in support of the rate design.
- ⁸ Worked with a Massachusetts municipal electric utility in the development of new rates intended to recover the costs of a new power supply agreement. Work included forecasting power costs, developing a power cost adjuster, allocating the substantial power cost increase to customers in an equitable manner and designing rates in a manner that did not overly burden any one segment of customers.
- Assisted in the development of a cost of service study and rate design for a Connecticut municipal electric utility. Work included reviewing the customer base and customer usage. The result was the introduction of a new rate class and a reallocation of costs to all customer classes and a new rate design that better reflected the principle of cost causation. In reallocating costs to customer classes, care was taken observe rate continuity and not create a rate shock to any particular customer segment.

and the second second second

Natural Gas and Electric: Planning and Procurement

- Analyzes, on an ongoing basis, retail electric and natural gas supply transactions in various states on behalf of the National Railroad Passenger Corporation (Amtrak). Evaluates whether to obtain electric and natural gas service from the regulated utility or from a competitive supplier, to determine the most cost effective option for Amtrak's energy needs.
- Participates in the planning and procurement activities of a number of small New England utilities (Littleton (NH) Water and Light Department, Washington (VT) Electric Cooperative.
 Groton (CT) Utilities). This involves forecasts of need, analysis of current resource portfolio with an emphasis on minimizing power cost risk, preparing competitive bidding solicitations for resources and evaluating and negotiating with suppliers.
- Played a key role in assisting the Massachusetts Water Resources Authority (MWRA) in obtaining an electric power supply for its wastewater treatment plant in Boston Harbor. Analysis included estimating the cost savings of competitive electric supply and examining the best method to utilize MWRA's on-site generation resources to maximize the value of the generation resources.
- * Assisted in the analysis for a long range integrated resource plan for a number of electric utilities in Vermont. Evaluated the costs of a number of power supply portfolios under various market conditions.
- Assists a Vermont electric cooperative in preparing short term and long term power cost budgets. This involves forecasting load and wholesale market prices, modeling costs of current resource portfolio as well as coordinating on procurement activities to accurately represent the future costs of newly procured resources.

Market Analysis

- Develops and maintains, on a continuous basis, La Capra's Northeast Market Model which is used to support the analysis for numerous client projects. These duties include frequent monitoring of fuel prices, generation and transmission additions or retirements, load forecast changes, and market rule changes. Also responsible for reflecting any identified changes in the market model.
- Prepared and delivered a presentation on current and developing New England market rules to a market participant seeking to acquire over 2,000MW of generating assets in New England.
 Provided advice on revenue potential and market risk of the assets which was used to inform the client's view of the value of the assets.
- Evaluated the market revenue outlook of two hydroelectric facilities in New York on behalf of a national power generation and marketing company. The analysis performed included modeling the electric production from the facilities for use in La Capra's Northeast Market Model, running the simulation model to forecast wholesale market prices and net revenues to the facilities. The project also included a forecast of revenues to the facilities from participation in the New York ICAP market.

RELEVANT EXPERIENCE - Market . Inalysis (confd.)

Conducted a wholesale market price forecast of a number of regions in New England on behalf of a renewable resource developer. The forecast involved projecting load and fuel prices in the region to use as inputs to the La Capra Northeast Market Model, running the model, processing the output, and presenting the results to the client in a written report. The forecast also included a projection of ICAP market prices in New England under the currently proposed Locational ICAP market.

Expert Witness Analysis

- Performed a detailed examination of the planning and procurement activities that occurred in 2001 and 2002 by the California Department of Water Resources. Assisted in the formation of audit reports on behalf of the California Bureau of State Audits.
- * Assisted in planning and performing an audit of a power contract for a Michigan utility. Issues examined included market valuation of potential sales, proper treatment of a pumped storage unit and validation of commitment/dispatch logic. Project also involved developing a thorough understanding of the workings of the MISO markets and the manner in which the utility and the merchant generator interact in the markets.
- * Conducted an analysis of San Diego Gas & Electric's participation in the California PX Block Forward Markets during the Fall 1999 to Summer 2000 period. Assisted in the formation of testimony presented on behalf of the California Office of the Ratepayer Advocate before the California PUC.
- Assisted in a review of the prudency of the power planning and procurement strategy and activities of PacifiCorp on behalf of Wyoming industrial consumers. Conducted analysis on appropriate procurement strategies and assisted in the development of testimony presented before the Wyoming Public Utilities Commission
- Conducted analysis on appropriate procurement strategies and assisted in the development of testimony presented before the Nevada Public Utilities Commission in a review of the prudency of the power planning and procurement strategy and activities of Nevada Power Company.

EMPLOYMENT HISTORY

La Capra Associates Regulatory and Markets Specialist

La Capra Associates Analyst

Boston Gas Company *Rate Analyst* Boston, MA May, 2006 - present

> Boston, MA 2000 - May, 2006

> > Boston, MA 1998 - 2000

and the second second

Resume of Arthur Freitas Page 4 of 4

Marquette University Graduate Coursework in Applied Economics

Marquette University B.A. Economics and Finance

PROFESSIONAL TRAINING

ISO NEW ENGLAND:

Locational Marginal Pricing (LMP 301) Market Interactions (MKT 301) Financial Transmission Rights (FTR 301) Locational Marginal Pricing (LMP 201) Market Interactions (MKT 201) Financial Transmission Rights (FTR 201) Ancillary Service Market Phase One Locational Installed Capacity (LICAP 201)

PROSYM USER TRAINING:

Henwood Energy Services Inc.

Milwaukee, WI 1994- 1998

Milwaukee, WI 1994

May 2007 May 2007 May 2007 December 2005 December 2005 December 2005 September 2005 April 2004

Altachment GLG-RD-3 National Grid NH Page 37 of 37

Table - 14 National Grid - New Hampshire Marginal Cost Study

Derivation of Marginal Prices Equi-Porportionately Constrained by Embedded Costs

Lin	e			dential ——	Sma	I C & I	Medlu	m C&I	-	Large	e C&I		
No	Description		ResNonHt	ResHt	SmHiW	SmLoW	MdHIW	MdLoW	LgHIW	LgLF<90	LgLF<110	LgLF>110	Totał
1	•		R-1	R-3&R-4	G-41	G-51	G-42	G-52	G-43	G-53		G-63	Company
	(1)		(2)	(3)	(4)	(5)	(8)	(7)	(8)	(9)	(10)	(11)	(12)
1	Estimated Delivery Revenue Regmits	{1}											\$49,633,399
2	Total Marginal Annual Revenue Requirements	{2}	2,034,015	40,310,561	8,457,783	1,254,486	9,625,936	1,302,151	1,321,794	1,292,747	23,860	759,863	66,383,195
Э	Difference	(1) (2)											(16,749,796)
4	% Difference	(3)√(2)											-25 23%
5	Equi-proportional Adjustment	(2) x (4)	(513,222)	(10,171,154)	(2,134,066)	(316,532)	(2,428,814)	(328,559)	(333,515)	(326,186)	(6,020)	(191,728)	(16,749,796)
6	Marginal Cost Constained to Allowed Revenues	(2) + (5)	1,520,793	30,139,407	6,323,717	937,954	7,197,122	973,593	988,279	966,561	17,839	568,134	49,633,399
7													
8	Marginal Unit Prices	Unit Costs from											
9	Customer	Table 14 X	\$23.12	\$22.90	\$26.71	\$26,73	\$75.23	\$75.17	\$95.49	\$95,49	\$240.25	\$240.25	
10		[1+ (4)]											
11	WINTER CHARGES												
12	Winter Supply Capacity Cost		\$0.0000	\$0,0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	
13	Winter Delivery Pressure Support		\$0,1598	\$0.2024	\$0.2109	\$0,1603	\$0.1961	\$0.1410	\$0.1879	\$0,1341	\$0.1077	\$0.0814	
14	Whiter Delivery Reinforcements		\$0.2268	\$0.2873	\$0.2994	\$0.2276	\$0.2784	\$0.2002	\$0.2667	\$0,1903	\$0 1529	\$0,1156	
15	Winter Delivery Main Ext.		\$1.4975	\$1.0971	\$1,9765	\$1.5030	\$1.8382	\$1 3215	\$1,7609	\$1,2567	\$1.0097	\$0.7630	
16	Winter Supply Commodity		<u>\$0.0000</u>	<u>\$0.0000</u>	<u>\$0.0000</u>	<u>\$0.0000</u>	<u>\$0.0000</u>	<u>\$0.0000</u>	<u>\$0,0000</u>	\$0.0000	\$0.0000	<u>\$0.0000</u>	
17			\$1.8841	\$2,3868	\$2,4868	\$1,8910	\$2.3127	\$1.6626	\$2.2155	\$1.5811	\$1,2704	\$0.9599	
18													
19	SUMMER CHARGES											_	
20	Supply Demand Charge		\$0,0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0 0000	\$0.0000	
21	Delivery Demand Charge		\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0,0000	
22	Commodity Charge \$'s per Dt		\$0.0000	<u>\$0.0000</u>	<u>\$0.0000</u>	<u>\$0,0000</u>	<u>\$0.0000</u>	\$0.0000	<u>\$0,0000</u>	\$0.0000	\$0.0000	\$0.0000	
23			\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	
24	TOTAL CHARGES												
25	Supply Costs												
26	Customer		\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	
27	Winter, \$/Dt		\$0.0000	\$0.0000	\$0,0000	\$0.0000	\$0.0000	\$0,0000	\$0,0000	\$0.0000	\$0,0000	\$0.0000	
28	Summer, \$/Dt		\$0.0000	\$0.0000	\$0,0000	\$0,0000	\$0.0000	\$0.0000	<u>\$0.0000</u>	\$0.0000	<u>\$0.0000</u>	\$0.0000	
29	Annual Avg, \$/Dt		\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	
30													
31													
32	Delivery					600 70			A		* 2 4 2 25	****	
33	Customer Charges		\$23.12	\$22.90	326.71	\$26.73	\$/5.23	3/5.17	395.49	395.49	5240 25	3240.25	
34	Winter, \$/Dt		51.8841	\$2.3868	32.4868	51.8910	\$2.3127	31.6626	\$2.2155	\$1.5811	\$1,2704	20.9599	
35	Summer, 5/DL		<u>\$0.0000</u>	<u>\$0.0000</u>	<u>30.0000</u>	<u>\$0.0000</u>	<u>\$0.0000</u>	<u>30.0000</u>	<u>\$0.0000</u>	0000.04	<u>au.0000</u>	\$0.0000	
36	Annual Avg, \$/Dt		\$1.2184	\$1.9301	52.1350	\$1,2506	31.8768	\$1.0351	\$1,7088	20.3288	30.0001	20.3901	
3/	or Facilities Charge Co logath		25.47	£ 37.07 €	72 41	5764	400.67	t 270.70 t	1 0 3 5 6 5	2 102 74	t 1442 55 C	2 967 27	
38	Facilities Charge, \$/Month	(o) / Autoual Dit :	JJ.47	a 37,07 3	12.41 3	07.04 1	409.03 1	210,10 \$	1,933.03 4	2,102,14	. 1,442.00 .	2,301.21	

43

.

Table - 6 National Grid - New Hampshire Marginal Cost Study

Development of Customer Accounting & Marketing Expense

Line	Year	Customer	Marketing	Total	Cost	Expense in	Annual	Average
140.		Expenses	Expenses	Related Expenses	INCEX	Dollars	Customers	Customer
-	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
		(1)	{1}	(2)+(3)	{2}	(4)*(5)		(6)(7)
1	1989	2,358,716	505,676	2,864,392	1.4772	4,231,246	58,809	71.95
2	1990	2,708,206	733,906	3,442,112	1.4223	4,895,570	60,216	81.30
3	1991	2,779,210	785,847	3,565,057	1.3742	4,899,061	60,958	80.37
4	1992	2,906,732	833,935	3,740,667	1,3433	5,D24,883	61,725	81.41
5	1993	2,943,968	1,088,668	4,032,636	1.3130	5,294,748	62,566	84.63
6	1994	2,886,335	1,049,296	3,935,631	1.2857	5,059,867	64,044	79.01
7	1995	2,823,394	854,466	3,677,860	1.3207	4,857,390	65.385	74.29
8	1996	2,730,030	965,699	3,695,729	1.2364	4,569,533	66,464	68.75
9	1997	2,414,940	975,279	3,390,219	1.2162	4,123,166	67,928	60.70
10	1998	2,337,755	1,039,833	3,377,588	1.2029	4,062,755	69,588	58.38
11	1999	2,235,895	1,084,002	3,319,897	1.1857	3,936,399	71,291	55.22
12	2000	2,088,686	954,001	3,042,687	1.1604	3,530,795	73,106	48.30
13	2001	855,662	462,788	1,318,450	1.1332	1,494,112	74,959	19.93
14	2002	1,060,725	54,167	1,114,892	1.1138	1,241,751	77,003	16.13
15	2003	1,966,563	374,418	2,340,981	1.0906	2,553,025	77,630	32.89
16	2004	1,980,273	1,191,064	3,171,337	1.0605	3,363,079	77,630	43.32
17	2005	2,139,209	1,064,874	3,204,083	1.0293	3,298,014	83,873	39.32
18	2006	2,472,634	1,658,193	4,130,827	1.0000	4,130,827	84,066	49,14
19								
20								
21								
22								
23								
24	REGRESSIO	N RESULTS				Expense (5)		Unit Cost (8)
25						vs Customers (6))	vs Year (1)
26	Slope =					-98.4453		-3.3392
27	Y Intercept ≃					10796430		6728
28	Coefficient of D	etermination (RSC	IR)			44.8%		68.36%
29	1 Probability					-3.61		-5.88
30								
31	MARGINAL C	OST ESTIMATES						
32	Trended Cost F	Per Customer				(\$98.45)		
33	Time Series pro	edicted Average Co	ost (2008)*slope	+intercept				\$22.99
34								
35	Average Cost F	Per Customer:						
36	1989-2006					\$56.13		
37	1997-2006					\$41.92		
38	2003-2006					\$41.29		
39	Current Averag	e Cost per Custom	er			\$49.14		
40	Average Cost I	Per Customer 2004	-2006:			\$43,95		
41								
42	Assumed Mar	ginal Cost		(3)		\$41.29		

NOTES:

ŝ

a.

1 Source: Cost data from Annual Reports, ACCTS 1780, 1781, 1784 excluding Uncollectible Accounts Expense in Account 1783.

2 Source: GNP Implict Price Deflator.

3 Regression results for time series are insufficiently robust for marginal cost, but confirm a declining trend.

Therefore, the current average cost over near term, post merger period will be used to estimate the Marginal Cost.

ENERGYNORTH NATURAL GAS, INC. D/B/A NATIONAL GRID NH DG 08-009

National Grid NH's Responses to OCA Set 3

Date Request Received: August 6, 2008 Request No. OCA 3-13 Date of Response: August 20, 2008 Witness: Gary Goble

- **REQUEST:** Is it the Company's position that the historic data provides a reasonable representation of going forward plant investment costs even after taking into consideration the effect of the proposed change in the CIAC policy on costs?
 - a. If the answer to the question is yes, please provide all analysis and documentation that justifies this conclusion.
 - b. If the answer is no, please explain how it is proper to utilize historic distribution plant investment data in the marginal cost study when, as a result of the proposed change in the CIAC policy, the historic data is no longer representative of the going forward cost of plant investment?
- **RESPONSE:** No. If the proposed change in the CIAC were accepted, the marginal cost study must be modified to reflect that the costs recovered by the CIAC would no longer be costs to the Company.
 - a. N/A
 - b. The historic data would be adjusted to remove costs that prospectively will be recovered through the CIAC.

Table - 5 National Grid - New Hampshire Marginal Cost Study

Development of Capacity Related Expense - T & D

Line		Capacity	Cost	Expense	Design	Avg Cost
No.	Year	Related	Index	2006	Day	Per Des'n
		Expenses		Dollars	Sendout	Day Dt
	(1)	(2)	(3)	(4)	(5)	(6)
			{2}			
1	1989	\$1,945,026	1.4772	\$2,873,169	92,038	\$31.22
2	1990	1,893,462	1.4223	2,692,990	94,799	28.41
3	1991	1,918,550	1.3742	2,636,450	95,896	27.49
4	1992	2,040,158	1.3433	2,740,569	98,274	27.89
5	1993	2,151,230	1.3130	2,824,510	101,510	27.82
6	1994	2,529,506	1.2857	3,252,074	102,395	31.76
7	1995	2,598,141	1.2599	3,273,331	105,007	31.17
8	1996	2,558,264	1.2364	3,163,130	107,684	29.37
9	1997	2,645,969	1.2162	3,218,013	112,869	28.51
10	1998	2,768,391	1.2029	3,329,978	119,052	27.97
11	1999	2,626,392	1.1857	3,114,111	120,233	25.90
12	2000	2,787,674	1.1604	3,234,872	128,617	25.15
13	2001	2,502,816	1.1332	2,836,275	124,000	22.87
14	2002	2,228,671	1.1138	2,482,262	122,483	20.27
15	2003	3,448,665	1.0906	3,761,043	116,027	32.42
16	2004	3,342,856	1.0605	3,544,969	128,044	27.69
17	2005	3,654,583	1.0293	3,761,721	136,000	27.66
18	2006	4,078,867	1.0000	4,078,867	138,746	29.40
19						
20						
21	DECRESS					Aur Cost (C)
22	REGRESSI	UN RESULTS			Expense (4)	Avg Cost (6)
23				vs	Demand (5)	vs rear (1)
24	Slope =				19.1510	-0.1001
20	T intercept =	Determination /			902222	300
20	Coefficient of	Determination (KSQK)		41.0%	1.070
21	(Statistic				5.34	-1.22
20	MARGINAL	COST ESTIMA	TFS			
20		+ Ber Docian Do			¢10.15	
31	Time Series	Producted Ava C	7 D = 2008 +	Slope + Intere	ant ent	¢26.20
37	nune Series	Fredicied Avy Co	551 - 2008	Slope + Interc	epi	\$20.20
32	Average Cos	t Per Design Do				
24	1090 2006					637 60
35	1909-2000					3∠1.0U ¢76 77
20	1991-2000					¢20.//
27	2002-2006		nian Day Dt			\$Z7.49
20	Current Aver	age Cost per De	Sign Day Dt			⊅∠9.40
30	Accumed H	arginal Cost 12	1		(24)	677 40
28	Assumed M	arginal cost (5,	ſ		(34)	<u>241.49</u>

NOTES:

Ì

 Source: Table - 5, Page 2.
 Source: GNP Implicit Price Deflator.
 Average costs per DD Dt appear to be relatively stable over time with long term. Used post merger costs for consistency with capacity related production expense.

ENERGYNORTH NATURAL GAS, INC. D/B/A NATIONAL GRID NH DG 08-009

National Grid NH's Responses to OCA Set 3

Date Request Received: August 6, 2008 Request No. OCA 3-23 Date of Response: August 25, 2008 Witness: John O'Shaughnessy

REQUEST: The Company indicated at the technical conference on July 24 and 25 that a possible reason for the large increase in the A&G Loading Factor (see GLG-RD-3 pg 19 line 28) is due to expenses that pre-merger were accounted for as O&M (or some other expense account) but are now being classified as A&G.

- d. Is this an accurate representation of the explanation that was conveyed during the technical conference?
- e. If so, please identify, for 2001 through 2006, the costs that were reclassified into the accounts listed on lines 2 through 9 of GLG_RD-3. Please include the account from which the expense was reclassified and the reason the expense was reclassified.
- f. If the shifting of expenses post-merger from O&M (or some other expense account) to A&G (as referenced in the previous question) is not an accurate description of a possible reason for the large increase in the A&G Loading Factor (see GLG-RD-3 pg 19 line 28), please provide an explanation for the increases in the accounts listed on lines 2 through 9 of GLG-RD-3 that occurred subsequent to the merger in 2001.

RESPONSE:

- a. Yes, at the technical conference the Company did indicate that a possible reason for the large increase in the A&G Loading factor is due to the reclassification of certain costs from various O&M expense accounts to A&G expense accounts.
- b. The Company does not have the technical resources to specifically compare the pre and post merger accounting. EnergyNorth used SAP as its accounting system prior to its acquisition by KeySpan.
 Subsequent to the KeySpan merger, EnergyNorth's accounting records were switched over to KeySpan's Oracle system, and currently SAP records can no longer be accessed by Company personnel. When the

Company converted its accounting system to Oracle, all SAP balances were loaded using a historical cost heading; however, there is no detail associated with these historical cost figures. The Company did compare 1999 and 2006 A&G costs and observed that the major variance lies with Account 1800 – Employee Welfare and Relief. This is because the Company now assigns pension costs to an A&G account instead of assigning it to various Production, Sales, T&D, and Customer accounts. The booking of these costs is based upon the Company's methodology regarding allocation of service company costs.

c. Not applicable.

Attachment GLG-RD-3 National Grint NG Page 19 of 37

3.704,164 1.265 586 560.762 120.049 2,324.499 2,324.499

2.858.060 1,317,507 653,279 131,959 2.414,329 (160,685)

2,120,924 1,446,136 930 684 108,423 2,722,240 2,722,240

2.785.081 2.054.161 499.375 25.580 1,734.487 45.411

0 2,63,2,950 2,987,475 169,183 1,096 1,792,736 (38,334)

0 153.735 128.028 259.214 389.048 1,665.715 8,054.062

939,758 2,016,463 476,545 523,092 116,069 668,196 658,196

2,014,845 2,014,845 348,348 540,667 540,667 0 124,465 828,965

1,211,703 1,729,686 330,736 367,459 567,459 567,459 161,238 767,033

1, 251, 689 324, 191 324, 191 556, 549 0 123, 090 684, 367

1,216,082 353,660 353,660 625,714 0 1,26,335 0 1,26,335

1,152,448 1,781,241 347,560 839,542 839,542 0 87,700 654,017

.108.635 .721.760 .349.060 718,935 0 145,458 657,151

1,213,411 1,697,784 322,298 702,387 0 253,807 617,446

1.266,573 1.507.337 315,340 629,173 953 188,696 953 953 953 953 953

1,221,330 1,591 407 278,118 683,729 1 803 203,570 635,012

Monghahi, Kujated Eurona 1170 Oana Donesaso 1191 Sanara Offica Sadrina 1193 Offica Sagrida 1194 Sugar Leva & Spec Serva 11980 Fungar Watta & Rahd 1980 Murc Gan Euro 1980 Dugheda Mirc Changas 1880 Dugheda Mirc Changas

1148,132 918,936 718,817 769,761

0 1126.711 662.680

1,100.023 1,791.207 332.022 670,272 131,950 577,760 430, 190 11, 060, 012

N/N

992,232

102 257

029,403 4,291,563

870,003 4,492,265

<u>942,578</u> 4,445,789

1,600,652 5,310,712

1,610,506

1,560,416 5,159,323

1.454.198 5.048,920

<u>1.464,186</u> 4.648,295

1.295.017

Taxes ofter than Income Totel Non-Plant Plant Related Expenses 267.082 989.007 0 127.000.13 125.000.13

24,265 1.017,636 296,187 296,935 12,209,040

26,354 878,375 264,554 454,772 31,624,085

22.670 875.967 67.825 67.825 244.628 \$1,211.090

94.035 94.037 94.033 94.015 94.015 91.451

99.269 899.988 91.404 91.<u>5189</u> 951.5189

081.00 197.700 022 04.022 256.512 212.000.12

46,622 936,439 91,728 <u>267,824</u> \$1,342,813

130.058 910.245 85.756 85.756 319.938 51,445,997

78,877 944,964 85,434 <u>326,547</u> 31,435,822

101.766 919.552 69.539 <u>336.945</u> \$1,427.002

242,111 926,729 163,164 143,164

24,430 923,310 56,489 <u>360,011</u> 364,240

>) Rents Fotal Pleni Related Expenses

ちゅうきゅねいだいはちゃりねがただれがおがんののみがあれるある

1797 Regulatory Exp 1798 Property Ins 1802 Gan PR Mahil 1803 Rents

9002

2002

100Z

2003

2002

2001

2000

5

1996

1

-

ŝ

191

Ĩ

1992

1991

5

886

Description

le s

.

Development of A & G Loeding Fectory

Table - 7 National Grid - New Hampshire Marginal Cost Study 210.517 8.274.594 622.287 74.278 \$696.565 58,06% 14,251,758 263,405,595 115,583 47.51% 608.709 77.906 5686.615 15.427.721 239,474,276 242,115,491 78 54% 100:057.8 332.004 69,442 11,145,574 5401,446 1457,602 72.32% 132,004 75,865 0 0 <u>5.093</u> 5.011 10.311.527 202,252,941 227,692,167 95.01% 249.220 276.670 850.716 1,127.386 8.413,769

125.38%

35.37%

X89.M

12.467.397 36.03%

32.25

40.39%

10.54%

13.57%

10.33%

Trifel Alloceble (15.M. (Tolui O.A.M. less n cots and A&G expenses) a 8.G. Loading Factor Nonplant Rei Exp Uhr (13.1)(25) Areiage 2003 - 2006 = 6.4. (11%)

214.MET.01 #26.64

41,19%

12,463,871

12.375.290

12.609,283

13,150,168

12,424,389

11.850,450

11,587,219

11.525.784

tion 10.604,454 44.21% 189,363,169

166,682,099 174,018,261

156,424,246

145,866.429

135.806,318

129.472,654

124,120,097

118,656,821

112,423,606

106.202.255

99.467.339

90'119'098

Total Gross Plant S

0.26% 0.28% 0 17% 0, 18% 0.56% 0.53% 1.27% £.16.0 190 0.97% 1.04% **KE6**.0 1.08% 1.22 1.28% 1.34% 141% 1,51%

DIES:

A & G Londing Factor Plant Rei Exp Line (22)(132) Averaga 2003 - 2006 = 0.22%

NOTES: 1 Source: Annuel Reports

÷

Table - 7 Nollonel Grid - New Hempshia Marghuel Cost Skudy

Development of Miscellaneous Losiding Factors

ŝ	Description	f			1861	1002		Ĩ	1905	Ē	1997	Ĭ	Ē	2900	1002	2002	2003	2004	2005	2006
	Materials and Supplies and Prepayments Materials and Supplies List Inventory (Included above) Prepayments Tous Umarke Prent	Loeder 3.0 3.0 1.0	211 - 121 -	5,759,184 4,124,55,1 1,176,084 3,100 8,487,319 10,487,319	107,200,00 107,000,0 100,001,1 0 106,200,200	8,804,208 8,110,668 1,1982,252 1,228 1,228 1,228 1,228	10, 148, (200 6,523,389 1,289,561 0 11,285,621	E 18 C1+ 8 222 C00, 7 8 19, 2300, 1 0 1 540, 051 152	8.397.268 7.1999.07 1.1.155.521 0 29.472.854	78, 875, 78 787, 875, 78 782, 875, 78 87 87 87 81 50 81 50 81 50 81 50 81 50 81 50 81 50 81 50 81 50 81 50 81 50 50 50 50 50 50 50 50 50 50 50 50 50	101, 172, 101 102, 100 1, 101, 200 1, 101, 200 0 0	80, 424, 984, 914 10, 1094 10, 1094 10, 1094 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	10, P89, 00-4 1, 412, 507 987, 404 0 0	8,262,718 8,262,718 7,982,8 8,35,992 0 0	E.126.013 E.026.013 E.02,023 E.02,023 0 0	LAR, PCR, 20 161,191,8 169,101,8 0 199,252,202	12,264,878 12,252,967 12,252,967 12,290 107,107	10 10 10 10 10 10 10 10 10 10 10 10 10 1	18,472,1996 18,472,1996 464,723 464,723 12,115,491 12,1	985'50¥'E9 0 875'652'02 875'652'02
	Mon-Fuel Loader (2-344-5y(6) (1) Avenega 2003 - 2006 = 0.11%		*00 *	2424	2	***	NS7 7	2 10%	105%	ź	1	5	ē	7.160	~ \$2.0	*****		1 00	% of 0	12.
2123	General Plant Loeding Factor Totki General Plant Total Uttiky Plant	3,4 1,105	2295 (16.0	1 04CE / 194-04	0,040,445 00,202,255	0%2 0%3,7 1 00%,62%,51	702,070,7 155,623,81	0, 264, 240 1 100, 001, 15	8,221,796 29,472,064	0.4770,155 010,1000,451	9,201,222 145,000,429	9.478.301 156.424.246	11, 244, 509 164, 642, 099	7,255,165 745,110,151	6,348,042 186,363,168	100 221 11	11,542,178 871,546,12	10,484,792	10,270,042	CAS, 204, 28
2 2 2 2 R 2	Gen Plant Factor (14/(15-14 (1) Average 2003 - 2006 = 4 / 1%		1 050	6	5	191	502.1	7.24%	4.78×	¥06 0	NEI 8	1.51	-		111	N 58 9	5 30%	145	ŧ	¥05 ¥
	Lovs Factor Totel Sendouri Totel Seles	8.5	1 642'C44	905'129'01	10,562,710 11,000,130	1 062,145,10 1 057,145,10	049-1870-E0	1 890'EEZ'90	05 688 400 03,175 170	029,931,011 029,261,611	0140'E1.2'Z11	02,364,270 01,015,990	000, 0021, 051 000, 0021, 051	281,285,011 111,616,011	029,040,020 072,040,421	145,107,650 2004,002,002	002.000,521	012,017,041	1911 (1912) 1911 (1912)	040 017,851 047,987,861
32	l oss Fective (24 µ(23) Average 1989 - 2006 = 97.75%		NON 18	N.M.	B7 80%	14 MON	PD4 (8	ĩ	11.57 %	1.6 06	N.1. A.	50.00	Ç	107.00	100	1 184	Ê,	101 98	No. 18	100 001
For -	FS; Used past merger data for Materials & Suppi	Vies and Ganaral F	Plant loeding	r lactors to eth	ninete effect of .	changes in acc	u pue Guyuno	cording overhe	Ę											

Used past merger state for Materials & Supplies and Ganeral Plant 2 Loss factor has remained stable for entire study period. Smith and Freitas Attachment **B**

ENERGYNORTH NATURAL GAS, INC. D/B/A NATIONAL GRID NH DG 08-009

National Grid NH's Responses to OCA Set 3

Date Request Received: August 6, 2008 Request No. OCA 3-25 Date of Response: August 25, 2008 Witness: Gary Goble

REQUEST: The following questions refer to the marginal cost study (EN07-R01) contained in Attachments to OCA 1-59.

- g. Please provide an explanation as to why customer expense per customer will increase with growth in the number of customers.
- h. Referring to Tab 5, please explain why the sum of account 1756 and 1761 increase from approximately \$1.6 million in 2000 to \$2.6 million in 2001.
- i. Referring to Tab 5, please explain what type of activity in Account 1761, described as Operation of Distribution Lines, involves work on service plant rather than distribution plant.
- j. Please explain the basis for using the relationship between service plant and the sum of service plant and distribution mains in order to designate some of Account 1761 as customer-related.
- k. Please explain the rationale for using the relationship between service plant investment and the sum of service and distribution mains investment in 1999 in order to designate a portion of distribution lines expense from 1999 to 2006 as customer-related, rather than using the actual relationship between plant investment in each year.
- 1. Referring to the Tab "Input" of the marginal cost study, please provide a table that shows to what FERC account the expense account numbers on this tab correspond.
- m. Referring to the Tab "Input" of the marginal cost study, please explain all changes in which accounts costs were booked as a result of the merger.
- n. Referring to the Tab "Input" please respond to the following questions.i. What is included in Account 1801?
 - ii. Why did Account 1801 increase from approximately \$850,000 in 2000 to approximately \$8 million in 2001?
 - iii. What is the basis for the swings in this account since 2001?
- o. Referring to the Tab "Input" please explain how any of the expenses listed as Non-plant expenses, Accounts 790 to 801, can be considered directly marginal to design day load.

RESPONSE:

- a) The regression results on Table 6, pages 14 and 16 of 37, indicate the contrary. The slope of all four regressions indicate that expenses are declining slightly.
- b) The legacy SAP accounting system used in EnergyNorth is no longer maintained and thus the Company is not able to verify the criteria for assignment of costs to these accounts. Although the cost increases between 2000 and 2001, the 2006 cost is actually more in line with the 2000 pre-merger costs.
- c) The code of accounts does not segregate between operating expenses for mains and services, as it does for maintenance. Operation expense for distribution lines includes those for both mains and services.
- d) Consistent with the response to part c of this question, expenses in account 1761 (Operation of distribution lines) were allocated to mains and services using the plant balances in mains and services. As a result, slightly over 60% of these expenses were assigned to mains operations and slightly less than 40% was assigned to services, which are customer-related.
- e) The filed study incorrectly applied the 1999 ratio to subsequent years. The correction has no significant impact to the results. This change will be incorporated in the update provided in response to Data Request OCA 3-15.
- f) In column A of tab labeled "Input", the Company has already identified to which NH PUC Accounts these expenses correspond. This agrees with the format provided in the Company's Annual Returns.
- g) As explained in (b) above, the legacy SAP accounting system used by EnergyNorth is no longer maintained. Thus, the Company is not able to verify the criteria for assignment of costs to these accounts and therefore cannot determine accounting changes resulting from the merger.
- h) Account 1801 is Miscellaneous General Expense. During 2001, all Service Company allocations from KeySpan to Energy North were pooled into one account (Miscellaneous General Expense). In 2002, a change was implemented in the accounting system to book these allocations to the individual general ledger accounts. The swings in the account from 2001 to present are based upon the nature of the classification of miscellaneous general expenses in the accounting system in total.
- i) The theoretical test to determine whether costs are marginal is to determine whether the costs will change in the long run with a change in the utility services provided to customers. For most utilities, multi-year regressions of non-plant A&G expenses are highly correlated with design day demand, customer count and commodity sendout. With the post-merger changes to accounting, the long term correlations for EnergyNorth were not as strong (35% to 57%). Qualitatively, these expenses are expected to grow with loads over the long run. Consider the two largest expenses, Employee Welfare and Relief and Data Processing. Employee Welfare and Relief, which are comprised of employee benefits are directly related to labor costs. Labor costs are primarily incurred for construction of plant and operations and maintenance expenses that have been shown to be marginal. Data processing includes primarily computer support for the billing, payroll and accounting systems. Each of these systems is, in turn, included to provide services to customers that are expected to grow as the utility grows.

								Netions M	Table - 5 H Grid - New) Biginal Cost S	tampahire Nudy								Alla	tament GLG-RD-3 Netional Grid NH Page 13 of 37
								Operatio	ons Expense	Deta - TED									
No.	Acci Description No.	1989	1990	1661	1992	1993	1994	1895	1996	1987	866	1999	5000	2001	2002	2003	2004	2005	2006
TRAN	(1) (1) (2) (2) (2) (2) (2) (3) (2) (3) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	ĉ	€	(2)	9	£	Ē	16)	(01)	£	2	61)	ŧ	5	٤	(11)	Ē	e.	(UZ)
	OPERATIONS EXPENSE	876,635	101,110	855'126	1.008.416	1.044,727	1,097,962	1,140,215	1 801,103	249.414	302.560 1.	321,293	1,133,718	951,838	57,284	320.484	312.197	184,191	118,552
• • • •	1/61 OF EROPENENT S 1/62 I AFFLER OF FRAITING I AND CARDANE 1/62 Z OTHER EXPENSE ON CUSI FREM (3)	499.455 560.876 1,521,593	506.645 528.850 1,575.073	465.317 531.909 1.593.768	427,244 516,860 1,640,356	425,732 472.644 1,660,222	455.773 455.773 1,087.950	418,145 367,338 1,836,058	419.195 312,919 1,825,448 1	410,571 350,967 ,559,267 1.	377.897 377.848 608,343 1.	335,345 520,572 486,528	459,144 584,951 1,241,404	2.201,098 794,765 730,015	1.347,652 617.813 509.277	1,142,383 576,786 326,395	1,308,514 762,729 137,913	994,006 1,054,884 28,062	744.598 1.009.092 108.592
1 1	Margmai Oper Exp (3)+(4)+(5)	1,936,966	1,944,682	1.968,624	1,952,520	1,943,103	2,031,529	1,925,698 1	1.924,217 2	010,952 2,	053,303 2,	012,771	2,157,013	3,347,698	2,022,949	2,041,633	2.384,440	2,243,081	2,318,499
5 E E E E E E E	MAINTENANCE UIS-SMOTUNNEE (* STIITETURES UIR MONTENANEE (* TISTERUIZMEME 1111 MART (* STINTES 1112 MARTHANGE (* GLISTOMERSME LERS	87,025 1,210,020 299,570 154,861	99.537 1,134,825 282,422 154,842	52,538 1,219,471 308,611 160,660	39,078 1,361,653 337,191 205,763	25,516 1,465,370 343,124 235,959	77.843 1.714.317 319.008 239.352	51, 158 1, 824, 935 1, 891 164, 524	37,502 7,52,954 1,752,954 1,67,791 1,21,875	47,161 ,800,709 1, 491,814 141,278	38,752 929,872 1. 523,597 124,235	853.705 483,637 107,248	1,959,501 315,671 81,997	9,504 998,586 601,828 106,371	1,277 1,377,864 659,851 110,542	18,871 2,543,029 672,960 217,685	22.753 2,338.751 599.862 234,867	25.340 2,910,168 942,821 147,822	21.010 3.268,184 978.716 150.171

2 2	Merginal Maint Exp (17)+(18)+(19)+(20)	1,751,476	1.671,626	1.747.280	£07,5 49 ,1	2.069,969	2,350.520 2	1,572,508 2	,400,122 2	480.763 2.	514,256 2.	444,590	2,367,169	1,716,289	2,148,554	3,452,565	3,196,033	4,026,151	4,416,061
28	MARGINAL T & D Exp & Superintenden (14)+(25)	3,688,442	3,618,306	3,715,904	3,898,223	013.072	1,382,049	(496,206 4	4 6CC 42C	491,715 4.	567,559 4.	621,800	4.524,982	5,063,988	4,171,503	5,494,198	5,580,473	8,269,232	6,734,560
	Allectation of Dril Lines to Customer Component Services Investment Mate Investment Envicent/Services Menns (301(30))(31)) Customer related Dist Lines Expense (32)(4)	23.205.608 41.537.169 35.73% 178.742	25.730.066 46.738.847 35.50% 179,884	28.432,370 49,495,895 36 49% 169,772	30.670.769 51.743.320 37.227 158.001	5 910.99.18 2 99.184 5 37.94%	5,476,909 31 6,239,217 54 36,09% 184,017	7.744,390 40 9.619.137 62 39.178 39.1782 163.782	10.000.000 2.326.668 39.11% 16.1,992	2706,896 46. 701,530 72 36.56% 158.812	615.422 49 647.284 76 39.02%	242,171,645 247,056 20,005	54,085,437 81,138,965 39,00% 179,051	57.948.787 93.264.062 38.00% 858,353	61.018.971 99.340.539 39.007 . 525.618	66.715,050 116.503,764 39.00%	812,297,271 197,818,221 200,96 200,66	72, 756, 727 782, 879, 281 790, 00 990, 529	665.028.08 138.152.361 200.25 138.062
****	Customer Related Alkochton of Superitriendence Expens Cust % [(5)+(19)+(20)+(33))((27)+(6)-(3) Customer Superintendence	27.6% 241,553	26.7% 243,539	27.1% 263,535	26.9% 271,074	26.2% 273.848	23.3% 255,511	23.6% 269,473	22.8% 272,249	23 8% 201.332	23.5%	25 9% 242,874	24 9% 281,839	43.4%	41.4%	34 8%	39 0% 121,729	415% 80,601	38.7% 217.516
8 R Q :	Customer - Related (5)+(19)+(33)+(33)+(37)	1.435.602	1,387,538	1,440,488	1,489,908	1,487,109	1.454,460	1 800,764,	356.797	1 500.044	1 626.71	585.104	1,433,509	2,513,977	1.936,522	2,026.515	2,229,653	2.613,757	2,645,962
	Capachy Espenses (Other excluding Equip on Cust Premises) (27): (39);43):(6)((27):(6);43)]	1.945,026	1,893,462	1.918,550	2,040,158	2,151,230 2	2,529,508 2	,598,141 2,	558,264 2	645.969 2,7	68,391 Z,t	526.392	2,787,674	2,502,816	2,228,671	3,448,665	3,342,856	3,654,583	4.076.867
NOTE 2 3	S Source: Armual Raports Costs in this account are joint batwaen customme and capac Costs in this account are not maginal.	ity components	. Individual c	component co	ndum ere sje	ted by allocat	ing on remains	ng expenses.											

•